RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR B.A./B.SC. THIRD SEMESTER (July – December), 2011 Mid-Semester Examination, September, 2011

Date : 12/09/2011 Time : 2 pm - 4 pm CHEMISTRY (Honours) Paper : III

Full Marks : 50

 $[2 \times 4 = 8]$

 $[2 \times 4 = 8]$

(Use separate answer scripts for each group)

Group – A

Answer **any two** questions :

1. Complete the following reactions and write mechanism for each reaction. $[2 \times 4 = 8]$

2. Complete the following reactions and give mechanism for each reaction.

a)
$$H^{+}$$

b) H^{+}
 H^{+}
 H^{+}
 H^{+}
 H^{+}
 H^{+}
 H^{+}
 H^{+}
 H^{-}
 H^{+}
 H^{-}
 H^{+}
 H^{-}
 H^{-

3. Carry out the following conversons. Mechanism is not necessary. (any four)

<u>Group – B</u>

Answer **any two** questions :

- 4. a) What are expected changes in bond order that accompany the following ionisation processes. [3]
 - i) $O_2 \rightarrow O_2^+$
 - ii) $N_2 + e^- \rightarrow N_2^-$
 - iii) $O_2 + e \rightarrow O_2^-$
 - b) Draw molecular orbitals for a hypothetical linear H₄ molecule and arrange the increasing energy of each molecular orbitals. [1]
 - c) Explain conductors, semiconductors and insulators in terms of Band theory. [3]
 - d) Would decrease, increase or have no effect on the acidity of the solution when a solution of AlCl₃ in liquid carbonyl chloride is treated with CaCl₂.
- 5. a) Explain why the conductivity of Ge is enhanced manifolds when trace amount of arsenic is added to it. [3]
 - b) Write the importance or utility of Lux-Flood concept with example.
 - c) Complete and explain the reaction with acid-base concept when SbF_5 is added to BrF_3 . [2]

[2]

[2]

- d) Write down the I.U.P.A.C. name of the following :
 - i) $[(CO)_3Fe(CO)_3Fe(CO)_3]$
 - ii) $[Co(NH_3)_6][Cr(CN)_6]$

6.	a)	Explain the greater s	stability of R_2OBF_3 that	In R_2SBF_3 and R_2SBH_3 than	R ₂ OBH ₃ [2]

- b) Arrange in increasing order and explain the acidity of the oxyacids of chlorine. [2]
- c) Distinguish between the followings with suitable example. (any two) $[1.5 \times 2 = 3]$
 - i) Ambidentate Ligands and Flexidentate Ligands
 - ii) Fluxional complexes and Template Complexes.
 - iii) Bridging Ligand and Chelating Ligand.
 - iv) Labile Complex and Inert Complex.
- d) Give an example with formula of the following : $[4 \times \frac{1}{2} = 2]$
 - i) Tetradentate Ligand
 - ii) Tridentate Ligand
 - iii) Perfect Complex
 - iv) Imperfect Complex

<u>Group – C</u>

Answer any two questions :

- a) Prove that the rate of change of chemical potential of the ith component in a mixture, with change of pressure is equal to its partial molar volume. Hence find out an expression for the chemical potential of the ith-component in a mixture of ideal gases as a function of its mole fraction. [4]
 - b) Chemical potential of a substance is often referred to as its "escaping tendency". —Explain. [2]

[2]

[2]

- c) $W_A^{Sl} = W_C^{-1}$. Can you justify this relation?
- 8. a) Using a suitable plot of μ vs T, discuss how the melting point of a pure substance depends on pressure. [3]
 - b) Describe the generation of viscosity from microscopic point of view. Also comment on the pressure independence of viscosity of gas. [3]
 - c) Spreading coefficient cannot be negative. True or False? —Jusify.

9. a) Show that
$$\left(\frac{\operatorname{del} A}{\operatorname{del} n_i}\right)_{T,V,n_{i\neq i}} = -T\left(\frac{\operatorname{del} S}{\operatorname{del} n_i}\right)_{U,V,n_{i\neq i}}$$
 [3]

- b) 21 gm of N₂ and 40 gm of O₂ are mixed at a constant T = 300K under a constant pressure of 100 Kp_a. Assuming the gases to behave ideally, find out ΔG per mole ΔS per mole for the mixing. [3]
- c) Show that for a soap bubble in air, the inside pressure is higher than that of outside by $\frac{4\gamma}{2}$. [2]